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A class of models for self organized criticality can be described in terms of a large Abelian group. Several 
exact results follow, including the existence of a unique non-trivial configuration representing the identity 
element. 

In this talk I descibe some rather elegant math- 

ematical properties of a simple cellular automaton 

model for self organized criticality. I will discuss 

how a subset of states of this model form an Abelian 

group. Then I will show how to construct the non- 

trivial state which represents the identity for this 

group. [I] The essence of this talk is a digression 

from the topic of this conference, but I will end with 

a brief mention of a tenuous connection with Gribov 

copies. 

The model was first presented to study self or- 

ganized criticality. [2] While this talk is not directly 

on that subject, let me begin by briefly summarizing 

this concept. Ref. 2 argued that strongly dissipa- 

tive systems can drive themselves to a critical state. 

Unlike conventional critical phenomena, this should 

occur without any tuning of parameters to a critical 

value. 

The prototypical example of this phenomenon 

is a sandpile. If sand is slowly added to a heap on 

a table, the pile will evolve a critical slope. If it 

is too steep, a catastrophic avalanch will flatten it, 

and if it is too flat, the sand will gradually pile up to 

steepen the pile. Ultimately, the size of an avalanch 

produced by the random addition of an additional 

grain of sand will be unpredictable, giving rise to a 

power law distribution of avalanch sizes. 

This concept of a dissipative system automat- 

ically becoming critical has been applied to many 

natural phenomena; indeed, it has been looked for 

in such diverse areas as earthquake structure [3] 

and economics. [4] The idea provides an alternative 

view of complex behavior in systems with many de- 

grees of freedom. It complements the concept of 

"chaos," wherein simple systems with a small num- 

ber of degrees of freedom can display quite complex 

behavior. 

Ref. 2 introduced a simple cellular automaton 

model to illustrate self organized criticality. The 

model is formulated on a finite two dimensional 

square lattice with open boundaries. On each cell 

i of this lattice is a non-negative integer zi repre- 

senting the local slope of the sand. The dynamics 

of this system involves an instability threshold value 

for this slope, which I take to be zc = 4. All cells in 

the system are updated simultaneously in discrete 

temporal steps. The updating rule is that if any cell 

has zi _> zc, then that cell has its value decreased by 

four and each of its neighbors are increased by one. 

Such an event is referred to as a "tumbling," many 

of which can occur simultaneously in one updating 

step. 

Note that in the interior of the lattice this dy- 

namics locally conserves the total "sand" or sum of 

the zi. Sand is lost only on the open boundaries. 

Because the dynamics involves a spreading of sand, 

it is easily shown that any configuration will even- 

tually relax to a stable state with all slopes less than 
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critical. Recently interesting geometric structures 

were seen to arise from the relaxation of uniform 

initial states [5]. 

After adding sand to the system for a while, 

there are some stable states which will never be ob- 

tained. For example, there is no way to completely 

clean the table of all sand giving the state with all 

slopes vanishing. For another example, two adja- 

cent cells which are initially not empty can never 

be made so; when one tumbles to zero it adds a 

grain of sand to the other. The states which can be 

obtained from a full table have been called "recur- 

sive." [6] A recursive state is defined to be one that 

can be obtained by some addition of sand to any 

other state followed by relaxation to stability. One 

such state is the minimally stable state O* defined 

as the state with all zi -- zc - 1. 

Ref. 6 showed that the number of recursive 

states is given by the determinant of the lattice 

Laplacian. Whereas an N site system has 4 N 

stable states, for large N the number of recursive 

states approaches 3.2102...N. Ref. 6 also showed 

that in the self organized critical ensemble, each 

recursive state is equally likely; this ensemble serves 

as the analog of the Boltzmann distribution for a 

conventional statistical system. 

Define ai to represent the operation of adding 

a grain of sand to cell i followed by a relaxation of 

the system back to stability. Ref. 6 pointed out the 

remarkable fact that these operators all commute 

with eachother. The proof uses the linearity of 

toppling on the slopes zi and uses the fact that a 

toppling only decreases the slope at the active site, 

For a detailed discussion see Ref. I. 

Several exact results follow from this observa- 

tion. In particular, if we restrict ourselves to the 

recursive set of states, then these operators ai have 

unique inverses. Thus, given a recursive configu- 

ration C, there is a unique recursive C" such that 

aiO' = O. Because of this property the operations 

of adding sand generate an Abelian group. 

I now define an operation of addition between 

states. Given stable states C and C" with corre- 

sponding slopes zi and 4, I define the state C' 6 C l 

to be that configuration obtained by re!axing the 

, ~t By construction, configuration with slopes zi t ~/. 

this definition is commutative. 

Now consider restricting onself to recursive 

states. Since the process of adding one state to 

another can be decomposed into a set of individual 

sand additions, and because those additions are in- 

vertable on recursive states, this addition of states 

is itself invertable. Indeed, under @ the recursive 

states themselves form an Abelian group, wh,~ch is 

isomorphic to the group generated by the ai .  

One of the fundamental properties of any group 

is the existence of an identity element. Thus, among 

the recursive states there must exist a unique config- 

uration T which when added to any other recursive 

state C relaxes back C. This is a property also pos- 

s e ~  by the state with all z / =  0, but that is not a 

recu rsive state. 

Intrigued with the existence of this special state, 

[ set out to find it. To proceed, | use the identity 

that adding four grains of sand to any site forces a 

tumbling and is equivalent to adding one grain to 

each neighbor. Thus the operation on a recursive 

state of adding four grains to one site and then 

removing one from each of its neighbors leaves the 

state unchanged. In terms of the operators a/we 

have the statememt 

H (a/ai-1) = 1  (1) 
je~(i) 

where n(i) denotes the nearest neighbors of site £ 

Now consider applying this combined operation 

to all sites of the lattice. Any site in the interior 
will receive four grains but then have them taken 

away when the operation is applied to the neighbors. 
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Only at the edges will things not balance. Thus we 

are led to consider adding one grain to all edge sites 

and two to the corner sites. On any recursive state 

this addition will relax back to the starting state. 

This argument leads me to consider the non- 

recursive state I0 defined to have one on the edges, 

two on the corners, and zero elsewhere. This state, 

and any multiple of it, when added to a recursive 

state leaves that state unchanged. I now consider 

combining this state with itself iteratively until it 

becomes recursive. Thus I define In = I n - ]  OIn-1 .  

For la*ge ehough n I will have In ---- In-1 = I ,  the 

identity i am searching ,*or. Figure 1 shows the 

identity state constructed in this manner on a 188 

by 288 cell lattice. 

I now briefly mention a few other exact results 

for this model. First, if (7 is itself recursive, on 

adding I the amount of sand lost at the edges must 

equal the sand contained in I ,  and is independent 

of C. In fact, a much stronger result is true: the 

number of topplings on any given site i during this 

relaxation is separately independent of (7. 

Second, if we consider the critical ensemble 

where all recursive states are equally likely, the 

average number of rumblings at any site j resulting 

from the addition of one grain to site i is given by 

the simple expression 

(T~j ((7))0~ = (~-~)~j. (2) 

where the toppling matrix ~ is defined by 

+4 i = j  
A i j  = - I  i and j nearest neighbors (3) 

0 otherwise 

Note that this is a definition for a lattice Laplacian. 

Finally, let me note a tenuous connection with 

Gribov copies. [7] In a rather elegant paper, B. 

Sharpe [8] considered a gauge fixing where the 

product of links coming out of any given site in a 

lattice gauge theory is constrained to be an arbitrary 

Fig. la.  The first bit of the identity state on a 

188 by 288 cell lattice_ The image is black where 

this bit is set, i. e. for slopes of ! or 3. 

Fig. lb.  The second bit of the identity state on 

a 188 by 288 cell lattice. The image is black where 

this bit is set, i. e. for slopes of 2 or 3. 

group element. For simplicity, let me consider the 

case of U(1) and require the product of links coming 

out of a site to be unity. To find the number 

of Gribov copies of the vacuum, we put a gauge 

transforming phase gi on each site and solve 

g 
jcn(1) 

where n( i )  denotes the nearest neighbors of site 

i. Note that this equation is identical to the re- 

lation between the operators ai used in the above 
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construction of the identity state. The number of 
solutions to this equation is the determinant of the 
matrixin Eq. (3) and equals the number of recursive 
states in the sandpile model. 
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